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The hormone vasopressin (AVP) regulates:

• blood osmolality (blood concentration)

• blood pressure

• kidney function

• liver function

Secretion increases during dehydration – mediated by a net depolarization
of the cell.
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Somato-dendritic secretion of autocrine and
paracrine messengers
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Autoregulatory somato-dendritic release
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Basal firing is slow-irregular

• Poisson distributed spike train

• Spikes evoked by random synaptic input

• Firing rate ≤ 1.5Hz
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• Each spike triggers secretion of AVP into the blood 7



Dehydration alters the firing pattern
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• AVP cells switch to a phasic pattern

• under extreme stress, AVP cells further switch to fast-continuous

• single, non-repeating bursts can be evoked in slow-irregular AVP cells
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Ionic Currents
Trans-membrane currents mediated by voltage and/or calcium sensitive ion
channels
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Mathematical Model
Hodgkin-Huxley type system with a simple calcium dynamics
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The DAP
Each evoked spike is followed by a transient depolarization (DAP)
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Modelling the DAP

Ileak = IK,leak + INa,leak

We model (Li and Hatton, 1997) the DAP by a transient (V - and)
Ca2+ -dependent modulation of a persistent potassium current: IK,leak

IK,leak = (1−R) GK,leak (V − EK)
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Comparing DAP’s from experiment and model

Time (seconds)

0 2 4 6

Time (seconds)

-62.6mV

0 2 4 6

10mV

Membrane
Potential

Membrane
otential

88nM

0 2 4 6

10nM

Calcium
Concentration

10mV

-65mV

0 2 4 6

10nM

Calcium
Concentration

Membrane
Potential

Membrane
otential

113nM

13



Multiple DAP’s summate to a plateau that is above spike threshold:
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• Reaches a plateau early in the burst

• Remains elevated until burst terminates
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Question: HOW does burst terminate?
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• AVP cells secrete an opioid – dynorphin – from their dendrites

• Dynorphin inhibits AVP cell activity

• Propose that effects of dynorphin increase during active phase
and clear during silent phase 16



Dynorphin agonists (U50-3):

• Inhibit the DAP

• Prevent bursting (Brown et al., 1999)

Dynorphin antagonists (BNI):

• Prolong durst duration (Brown, 1999)
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HOW does dynorphin act?

• We propose that dynorphin shifts the half-activation of R to higher
Ca2+ concentrations
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• Thus raising the plateau threshold while leaving [Ca2+]i unchanged

• Eventually plateau can no longer support spiking and cell falls silent –
burst terminates
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Dynamics of dynorphin and the κ-receptor

• D is augmented by ∆ when the cell fires the ith spike (say at time Ti)

• D decays exponentially between spikes

d
dt

D = ∆δ(t− Ti)−
1
τD

D ∆ = constant

Upregulation of the κ-receptor
Propose that ∆ increases as a function of D
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• Interpretation: dynorphin upregulates κ-receptor density

20



Comparisons between real and model bursts
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If cell depolarized far enough...

...phasic activity
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Analysis: the Fast/Slow reduction

To analyze the phasic model – first split into fast and slow components

• fast: the spiking currents – INa, ICa, IK, IA, Ic

• slow : the plateau oscillation – [Ca2+]i and D
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Spiking currents (Ispike) pass through saddle-node bifurcation
as plateau amplitude increased:
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Dissociation of SLOW from FAST nontrivial:

...the two subsystems are not autonomous

Instead write SLOW as a firing rate model and decouple subsystems with
this ansatz

d

dt
C = ν(R)∆Ca −

1
τCa

(C − Cr)

d

dt
D = ν(R)∆D − D

τD
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Empirically ν can be fit to

ν =
{

0 R ≤ Rthresh

Γ (R−Rthresh)γ
R > Rthresh
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and Rthresh is a linear function of Iosm
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Nullclines
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Sub-threshold behaviour

Excitable Bursting – Iapp = 0

• Stable fixed point at D = 0 and [Ca2+]i = [Ca2+]rest.

• System is excitable – single oscillations can be evoked by moving the
system above threshold (∆Ca2+ > 30nM).
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• Single oscillations are equivalent to evoked bursts in the full model.

• Threshold is close to the calcium influx due to 3 spikes.
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Super-threshold behaviour
If the applied current (Iapp) is increased above threshold, then the fixed
point loses stability and the system starts to oscillate – phasic activity.
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Firing transitions

• stable steady state V phasic oscillation:
slow irregular V phasic V saddle-node bifurcation

• phasic oscillation V stable steady state:
phasic V fast continuous V Hopf Bifurcation
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Conclusions

We have constructed the first qualitative and quantitative model of the
electrical activity of vasopressin MNC’s

We propose that phasic activity must be driven by an auto-regulatory
mechanism, and that dynorphin/κ-opioid receptor secretion is a likely
candidate for this mechanism.

Our model reproduces:

• single spikes, basal firing and the fine structure of bursts

• the sequence of firing patterns observed during physiological stress

• (the transient discharge that occurs during sudden stress)

We have also shown that the cells have both excitable and phasic bursting
modes: possibly explaining the difference between in vivo and in vitro
recordings.
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